Analytical Solution to One-dimensional Advection-diffusion Equation with Several Point Sources through Arbitrary Time-dependent Emission Rate Patterns

نویسندگان

  • M. Mazaheri
  • J. M. V. Samani
  • H. M. V. Samani
چکیده

Advection-diffusion equation and its related analytical solutions have gained wide applications in different areas. Compared with numerical solutions, the analytical solutions benefit from some advantages. As such, many analytical solutions have been presented for the advection-diffusion equation. The difference between these solutions is mainly in the type of boundary conditions, e.g. time patterns of the sources. Almost all the existing analytical solutions to this equation involve simple boundary conditions. Most practical problems, however, involve complex boundary conditions where it is very difficult and sometimes impossible to find the corresponding analytical solutions. In this research, first, an analytical solution of advection-diffusion equation was initially derived for a point source with a linear pulse time pattern involving constant-parameters condition (constant velocity and diffusion coefficient). Hence, using the superposition principle, the derived solution can be extended for an arbitrary time pattern involving several point sources. The given analytical solution was verified using four hypothetical test problems for a stream. Three of these test problems have analytical solutions given by previous researchers while the last one involves a complicated case of several point sources, which can only be numerically solved. The results show that the proposed analytical solution can provide an accurate estimation of the concentration; hence it is suitable for other such applications, as verifying the transport codes. Moreover, it can be applied in applications that involve optimization process where estimation of the solution in a finite number of points (e.g. as an objective function) is required. The limitations of the proposed solution are that it is valid only for constant-parameters condition, and is not computationally efficient for problems involving either a high temporal or a high spatial resolution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.

In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...

متن کامل

Three-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.

In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...

متن کامل

Solute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow

In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...

متن کامل

Two-dimensional advection-dispersion equation with depth- dependent variable source concentration

The present work solves two-dimensional Advection-Dispersion Equation (ADE) in a semi-infinite domain. A variable source concentration is regarded as the monotonic decreasing function at the source boundary (x=0). Depth-dependent variables are considered to incorporate real life situations in this modeling study, with zero flux condition assumed to occur at the exit boundary of the domain, i.e....

متن کامل

Solute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow

In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013